
1.1 Reading in files

we can use the context manager to read in files
what we need:

path to file to be read
reading mode (see: geeksforgeeks for more information)
encoding (normally utf-8)
variable to operate on the file content

We then can go on with processing the text, e.g. tokenize, get word frequencies etc.

For large files it is advisable to use an iterator to read a file line by line (see DigitalOcean for more
information):

lines = []
with open (path, "r", encoding="utf-8") as file_in:
 for line in file_in:
 lines.append(line)

1.2. Writing output to a file

we can use the context manager to write objects to a file, e.g. a dictionary
what we need:

path (location) for file to be saved
writing mode (see: geeksforgeeks for more information)
encoding (normally utf-8)
variable to operate on the file content

my_dict ={"apple": "green", "banana":"yellow", "mango":"yellow", "orange": "orange"}

with open ("fruitcolors.txt", "w", encoding="utf-8") as file_out:
 for key, value in my_dict.items():
 file_out.write(f"{key} - {value}\n")

with open (path, "r", encoding="utf-8") as file_in:
 text = file_in.read() # read whole file as one string
 text_list = file_in.readlines() # get a list of lines from file
 text_list_no_breaks = file_in.read().splitlines() # get list of lines from file without line br

Cheat Sheet 3

1. Reading and Writing Files

https://www.geeksforgeeks.org/reading-writing-text-files-python/
https://www.digitalocean.com/community/tutorials/read-large-text-files-in-python
https://www.geeksforgeeks.org/reading-writing-text-files-python/

file content:

apple - green
banana - yellow
mango - yellow
orange - orange

Syntax:
dictionary = {"key1" : "value1", "key2" : "values2" }
key + value = item

my_dict = {
 "name": "Chomsky",
 "firstname": "Noam",
 "year of birth": 1928
}
print(my_dict)

{'name': 'Chomsky', 'firstname': 'Noam', 'year of birth': 1928}

Access a dictionary value:

print(my_dict["name"])

Chomsky

we can use the library Counter to count elements of a list within a dictionary
what we need:

library import
list of objects (preferably strings)
variable for saving dictionary and its content

from collections import Counter

sample = "I go up up up without looking down down down."

counted= Counter(sample.split(" ")) # split sentence to list at whitespace
print(counted)

Counter({'up': 3, 'down': 2, 'I': 1, 'go': 1, 'without': 1, 'looking': 1, 'down.': 1})

2. Dictionaries

3. Counting with Counter

we can use the library spacy as a powerful tool to tokenize and annotate our data
what we need:

library import
loading the language model
variable for saving the annotated tokens

import spacy

text = "Hello, Jim, I am Lynn! It is nice to meet you. I like you!"
nlp = spacy.load('en_core_web_sm') # load language model
annotated_text = nlp(text) # tokenization and annotation

3.1 Using spacy's annotation for POS-Tags

get frequency of each personal pronoun in our variable text

write each pronoun and its frequency to a file

PRONOUN_TAG = "PRON"
pronouns = []
get list of all pronouns
for elem in annotated_text:
 if elem.pos_ == PRONOUN_TAG:
 pronouns.append(elem.lemma_)

count frequencies
pronoun_counts = Counter(pronouns)

write pronouns and their frequencies to file
with open ("word_freq_nouns.txt", "w", encoding="utf-8") as file_out:
 for key, value in pronoun_counts.items(): # access dictionary keys and values
 file_out.writelines(f"{key}: {value}\n")

file content:

I: 2
it: 1
you: 2

4. Working with spacy

3.2 Using spacy's annotation for **lemmata**

get number of types and tokens in variable sample
calculate type-token ratio

import spacy

sample = "I go up up up without looking down down down."
nlp = spacy.load('en_core_web_sm') # load language model
annotated_text = nlp(sample) # tokenization and annotation

num_tokens = len(annotated_text) # get number of tokens
tokens_to_types = [] # temporary list

get lemma of every token
for elem in annotated_text:
 tokens_to_types.append(elem.lemma_)

types = set(tokens_to_types) # get unique lemmata
num_types = len(types) # get number of types

ratio = num_types/num_tokens *100 # calculate ratio
print(round(ratio, 3))

63.636

for loop with list comprehension and condition
tokenized_clean = [word for word in tokenized if word.isalpha()]

lower words to remove duplicates (but be careful with proper nouns)
tokenized_clean_lower = [word.lower() for word in tokenized_clean]

count word frequencies
word_freq = {}
for word in tokenized_clean:
 if word in word_freq:
 word_freq[word] += 1
 else:
 word_freq[word] = 1

5. Some additional hacks
Remove punctuation marks from a list of tokens:

Lower all words in a list of tokens:

Count words using a dictionary:

count word frequencies
for key, value in word_freq.items():
 if value == max(word_freq.values()):
 print(f"{key}: {value}")

count word frequencies
for key, value in word_freq.items():
 if value == min(word_freq.values()):
 print(f"{key}: {value}")

Get the most frequent word in a dictionary with word counts:

Get the least frequent word in a dictionary with word counts:

